If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+64Y+192
We move all terms to the left:
-(-16Y^2+64Y+192)=0
We get rid of parentheses
16Y^2-64Y-192=0
a = 16; b = -64; c = -192;
Δ = b2-4ac
Δ = -642-4·16·(-192)
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-128}{2*16}=\frac{-64}{32} =-2 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+128}{2*16}=\frac{192}{32} =6 $
| 3x+32=24 | | x/6-5=x/2+x/3-4 | | (4x+52)=(7x+7) | | 3y=0+10 | | 2/x=12/24 | | x/6-5=1/2x+1/3x-4 | | 9/10n=-1.1 | | 5r-8=44 | | 2a-6=3a+6 | | 1/4=y+7/4 | | 5x=0+10 | | 27+9b=90 | | 4a+6=-21 | | 55=3w+16 | | 2a-6=-3a+6 | | 5x=-3(0)+10 | | 51=p300 | | 3c+3c−2c−2c=12 | | 6x+(3•-2x+1)=5 | | 6(-2)-4c=16 | | 7x-18-5x=32 | | 380q=228 | | 27600=5x*5/14 | | -4x-2(8x+1)=- | | 30t=6 | | 108+7m=206 | | x-20=2x+x | | -243=-9(10=x) | | 6/18=m/3 | | 11-w/5=3-w | | 7d-12+2d+3=17 | | 0=6-0.5p+12 |